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ABSTRACT

Fast radio bursts (FRBs) are bright, millisecond-duration radio signals of extragalactic origin. The

physical nature of their progenitors and emission mechanisms is unclear. UMAP (Uniform Manifold

Approximation and Projection) is a machine learning algorithm for dimensionality reduction that has

been used to classify gamma-ray bursts into two archetypes suggestive of distinct astrophysical origins.

In this work, we apply UMAP to search for archetypes in the CHIME/FRB Catalog, a population of

700 FRBs including about 200 from more than 50 known repeating FRB sources. Consistent with other

studies on the catalog, we find evidence for distinct archetypes of FRBs based on their light curves.

However, we also find that individual FRB sources can produce repeat bursts of multiple archetypes.

We argue this is consistent with a single emission mechanism producing FRBs with a continuum of

properties, in contrast to gamma-ray bursts. This suggests that all FRBs have the potential to repeat.

We evaluate predictions of previous works on repeating vs. non-repeating FRB sources and assess the

implications of a unified FRB model.

1. INTRODUCTION

Since their first identification in 2007 (Lorimer et al. 2007), transient astronomical events known as Fast Radio

Bursts (FRBs) have been the subject of scrutiny for their unusual properties, their origins, and their potential use as

astronomical probes. They are extremely fast (10−4 to 10−2 s) and stochastically produced at a rate of ≈1,000 per

day at a fluence of order Jyms (Petroff et al. 2019). The frequency dispersion measure (DM) and Faraday rotation

imparted on FRBs by intervening interstellar and intergalactic media make it possible to probe those otherwise difficult-

to-observe environments (Bhandari & Flynn 2021; Prochaska et al. 2019). With sufficient data, FRBs may even help

to constrain cosmological model parameters (James et al. 2021).

It is unclear whether all FRBs are a result of a single emission mechanism or whether there are several classes of

FRB-emitting phenomena, as with gamma-ray bursts. Some FRBs originate from regions of active star-formation,

while others have been localized within globular clusters (Bhandari et al. 2020). There is growing evidence that neutron

stars, particularly magnetars, represent a portion of the FRB population (Bochenek et al. 2020; Andersen et al. 2020).

Progenitor pathways thus may include the death of massive stars as well as binary formation channels.

A subset of FRB sources are known to periodically repeat (Caleb & Keane 2021). The classification of repeating vs.

non-repeating FRB sources has been the focus of significant research in the past five years (Niu et al. 2022; Hilmarsson

et al. 2020; Kirsten et al. 2023). A few models have found statistical differences between the populations of repeaters

and non-repeaters, e.g., Zhu-Ge et al. (2022). Pleunis et al. (2021) found that FRBs from repeating sources have

significantly higher durations and spectral running parameters on average. However, it is unknown whether all FRB

sources have the potential to repeat over a range of timescales not yet probed by current observational facilities.

Pleunis et al. (2021) found that the dedispersed light curves of most FRBs can be visually classified into one of four

archetypes based on their duration, number of sub-bursts, and scattering timescale. Chaikova et al. (2022) obtained

a different set of archetypes by cross-correlating light curves. In both cases, each archetype contained bursts from

repeating and non-repeating sources, suggesting that the repeat likelihood of FRBs cannot be determined from their

light curves alone.
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As suggested in Pleunis et al. (2021), the focus of this work will be creating a predictive model to attempt to

reproduce these archetypes. We will use unsupervised machine learning to exclude any existing biases and evaluate

the extent to which the light curves truly support a classification of FRBs into distinct categories and, indeed, whether

those categories correspond to repeater vs. non-repeater bursts. The success of this model should elucidate whether

any observed archetypes of FRBs truly represent distinct astrophysical origins, or instead one continuum of properties.

In Sections 2.1-2.2, we give an overview of the CHIME telescope and the CHIME/FRB public database. In Section

2.3, we introduce the technique of dimensionality reduction and the Uniform Manifold Approximation and Projection

(UMAP) algorithm (McInnes et al. 2018). We describe our data pre-processing and UMAP pipeline for FRB light

curves in Section 2.4, then present the resulting classifications in Section 2.5. In Section 3, we corroborate the

classifications from UMAP with findings of other works (Zhu-Ge et al. 2022; Pleunis et al. 2021; Chaikova et al. 2022)

and demonstrate that individual sources can produce repeating bursts with light curves spanning multiple classes. We

discuss future work to search for other physical differences between sources of bursts in different classes and evaluate

the implications for a theory of a common FRB emission mechanism.

2. METHODS AND RESULTS

2.1. CHIME Telescope

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an array of four 100-meter-long cylindrical

radio reflectors located in the Canadian province of British Colombia. It has a field of view of more than 200 square

degrees, bandwidth spanning 400-800 MHz, and 1 ms sampling time. Its field of view can be broken up into 1,024

individual beams approximately 20-40 arcminutes across (Collaboration et al. 2021).

CHIME has a real-time detection pipeline designed specifically for FRBs. Downsampled data is dedispersed in real

time at DM values up to 13,000 pc cm−3 and searched for peaks with a signal-to-noise ratio of 10σ or higher. If such

a signal is found, then the full-resolution data is recalled from a ring buffer and catalogued (Amiri et al. 2018).

This system is very effective at detecting FRBs, with over 1,000 discovered since the start of the project (Collaboration

et al. 2023). The instrument itself has a few shortcomings. For instance, many FRBs have durations or microstructures

much shorter than CHIME’s 1 ms resolution (Farah et al. 2018), meaning that some FRBs within the detectable

frequency and intensity range are missed. FRBs often span frequency ranges much larger than CHIME’s 400-800 MHz

bandwidth, so it is impossible for CHIME to determine their true extent in frequency space. The 20-40 arcminute

beam widths are typically unable to constrain the positions of FRBs sufficiently to localize them to a host galaxy

(Heintz et al. 2020).

2.2. CHIME/FRB Catalogs

The CHIME/FRB Collaboration (Collaboration et al. 2021) have published two catalogs of FRB observations, with

a total of more than 700 individual bursts, including around 200 from more than 50 known repeating sources. They
represent the biggest collection of FRBs from a single site and enable analysis of a large portion of FRB parameter

space. Each catalog entry includes a dedispersed light curve and a variety of summary data including burst duration,

intensity, and dispersion measure. These data are freely accessible via the CHIME/FRB Public Database.

Summary data are determined for each FRB by a least-squares fit to a dispersed dynamic spectrum profile:
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where f0 = 400.1953125 MHz, k = (2.41 × 10−4)−1 s pc−1 cm3 MHz2, and A, τ, w,DM, tarr, γ, r are fit parameters

(Collaboration et al. 2021). It is essentially a gaussian pulse convolved with an exponential tail in the time axis and

a running power law in the frequency axis. It is worth noting that this is an approximation, so some FRBs with more

complex structure may not have good fit results.

2.3. UMAP Algorithm

Uniform Manifold Approximation and Projection (UMAP) is an unsupervised machine learning algorithm used

primarily for dimensionality reduction. Inputs are highly-dimensional datasets and outputs are 2D projections thereof.

The quality of the output depends on the choice of the “hyperparameters”, n neighbors and min dist, which control

https://chime-frb-open-data.github.io/
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Figure 1: UMAP projections (left) of a toy dataset (right) with a variety of common values for the n neighbors and

min dist parameters. Figure reproduced from Understanding UMAP by Andy Coenen, Adam Pearce under Apache

2.0 license.

the amount of global vs. local structure preserved from the data and emphasized in the projection, respectively

(McInnes et al. 2018).

Figure 1 shows UMAP projections of a toy dataset, demonstrating how global structure of a highly-dimensional

dataset can be projected onto a 2D map. The axes of the individual projections are meaningless. Only the relative

distance between two points is indicative of their “similarity” as judged by UMAP. The original dataset (the radial star

pattern) is essentially continuous on a global scale, so projections using higher values of n neighbors and min dist

perform best while those using lower values are overwhelmed by local variations.

2.4. UMAP Analysis of CHIME/FRB Catalog

UMAP is unsupervised, meaning it does not consider existing labels or categories of data points in its learning process,

so classifying astronomical observations is a natural application. Unsupervised dimensionality reduction algorithms

have previously identified distinct classes of gamma-ray bursts in the the Swift/BAT catalog based on their light curves

alone (Jespersen et al. 2020). Here, we apply UMAP to light curves in the CHIME/FRB catalog in attempt to reveal

a physically-motivated classification of FRBs and their emission mechanisms. We choose a range of hyperparameters

that will emphasize the global structure of the FRB population.

All light curves are available as 0.983 ms resolution arrays of intensity vs. time. They are not of equal length and the

peak intensities are not aligned to a common index, so pre-processing is required to make the light curves comparable

using UMAP’s Euclidean “pixel by pixel” metric. We utilize the pre-processing method in Jespersen et al. (2020)

of zero-padding and Discrete Fourier Transforming (DFT) the light curves before running UMAP on the resulting

Fourier amplitudes. It was also found that normalizing each light curve to amplitude 1 before the DFT promoted

structure-based clustering of FRBs in the projection while de-emphasizing noise and relative brightness. This pipeline

was implemented in Python using the numpy and umap learn libraries. The code can be accessed on GitHub at

https://github.com/guutz/dawn2023.

2.5. Results

Figure 2 shows UMAP projections of the pre-processed light curves at selected values of n neighbors. Distinct

clusters of bursts are present, each roughly sorted by duration and shape. The algorithm was not provided any

metadata for the light curves; it was able to identify burst archetypes solely by analyzing the DFTs. Note that the

same clusters appear in the two separate projections even though they used different hyperparameters, which confirms

some degree of underlying structure within the dataset.

https://pair-code.github.io/understanding-umap/
https://github.com/guutz/dawn2023
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(a) n neighbors=15 (b) n neighbors=30

(c) Expanded view of boxed region in (a). This cluster is composed
of longer, more scattered bursts.

(d) Expanded view of boxed region in (a). This
cluster is composed of the shortest bursts in the
catalog.

Figure 2: UMAP projections of zero-padded normalized DFT light curves from CHIME/FRB catalog. Colorbar

indicates burst duration in ms on a log scale. Inset graphs display catalog metadata, raw time series (gray trace), and

best-fit model time series (blue trace).

Projections in Figure 3 were made with “parametric UMAP”, a variant of UMAP which uses a convolutional neural

network to learn the structure of the original dataset instead of the usual “nearest neighbors” method (Sainburg et al.

2020). The parametric UMAP projections have fewer clusters with less distinct boundaries compared to those of non-

parametric UMAP, which is an expected consequence of better preservation of global structure. The remaining clusters

are still roughly divided between longer- and shorter-duration FRBs, consistent with the non-parametric projections.

Most notable out of these results is the lack of majority-repeater or majority-non-repeater clusters. It can be seen

in Figure 3 that repeated FRBs, marked by star shapes, are present in all clusters. Figure 4 highlights two prolific

repeaters within the projections from Figure 2. Each has produced a diversity of bursts spanning multiple of the

UMAP-identified archetypes. In other words, UMAP has failed to find any statistical differences between light curves

of repeating and non-repeating FRBs.

3. ANALYSIS AND DISCUSSION

The clusters of burst properties from Section 2.5 confirm several features of the CHIME catalog found by previous

studies. Consistent with Pleunis et al. (2021)’s discovery of a correlation between FRB duration and repeat likelihood,

we found (e.g., Figure 3a) that regions of the UMAP projections with the longest FRBs also had relatively high

densities of repeated FRBs. Our UMAP projections also independently identified four or five distinct archetypes of

light curve shapes similar to those in Pleunis et al. (2021) (e.g., Fig. 2). Consistent with Zhu-Ge et al. (2022) and

Chaikova et al. (2022), each of whom used different machine learning and/or data pre-processing methods, we found

that repeated FRBs appear in every cluster of every projection found. Also in agreement with the latter two works,

we found that many individual FRB sources have produced bursts in every cluster of every projection found.

In other words, it is clear there are distinct archetypes of FRBs based on their light curves, and it has been shown

that a single repeating FRB source can exhibit multiple archetypes over time. This has also been demonstrated by
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(a) Projection of time series data before normalizing. The
small cluster of bursts on the left side all have durations ≤ 1
ms, the resolution limit of CHIME, so it may be a spurious
classification.

(b) Projection of time series data after normalizing. The
lonely burst in the middle of the graph is highly scattered
and had a poor SNR, likely causing it to be set aside from the
rest.

Figure 3: Parametric UMAP projections of zero-padded DFT light curves from CHIME/FRB catalog. Colorbar

indicates burst duration in ms. Star shapes indicate a burst from a known repeating source.

(a) Fig. 2b with all bursts from repeating source
FRB20200929C colored black.

(b) Fig. 2b with all bursts from repeating source
FRB20180916B colored black.

Figure 4: Individual repeating sources can produce FRBs in multiple distinct categories, as defined by the UMAP

projections.

observation of the same source over several weeks (Farah et al. 2018). These results suggest that all the FRBs observed

so far could have been produced by the same emission mechanism. This would also mean that so-called non-repeating

FRBs actually come from repeating sources which have only been seen once, perhaps due to selection effects or a

longer repeat timescale.

As discussed in Section 1, the diversity of astrophysical environments in which FRBs have been localized suggests

that FRBs can originate from several types of progenitors. This does not rule out a common FRB emission mechanism

which could proceed in the environments of all those progenitors, e.g. a highly-magnetized plasma field. Some possible

emission mechanisms of this type are discussed in Lyubarsky (2021); Connor et al. (2020); Zhang (2020).
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Given that some FRBs are known to originate from the same environments of other high-energy transients like

gamma-ray bursts from magnetars (Andersen et al. 2020), an implication of the unified FRB theory is that all FRBs

should be accompanied by other high-energy phenomena. Thus, a key part of testing the theory is multi-wavelength

observations. Bailes et al. (2021) compiled a wealth of observations of galactic magnetar SGR J1935+2154 in the years

leading up to its emission of FRB20200420. Nicastro et al. (2021) suggested a reversed FRB search in which a few small

radio telescopes follow the gaze of x-ray or gamma-ray telescopes. Another option could be to focus several different

observatories on nearby galaxies and supernova remnants, especially ones with known repeating FRB sources. This

would have higher sensitivity and higher reward for a detection. These strategies also have the natural consequence of

localizing the sources of detected FRBs to a much more precise position than CHIME is capable of. Localizing FRB

sources will thus be one of the best ways to constrain the range of plausible theories.
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